Principles Of Chemistry A Molecular Approach Pdf Torrent
On
Torrent Principles Of Chemistry A Molecular Approach. Fourth edition ORGANIC CHEMISTRY Francis A. Carey University. Fennema's Food Chemistry 4th edition.pdf.
Mastering Chemistry
- Yan, J., Estévez, C., Smith, J. E., Wang, K., He, X., Wang, L., et al. (2007). Dye-doped nanoparticles for bioanalysis. Nano Today, 2, 44–50.Google Scholar
- Cao, Y. C., Jin, R., Mirkin, C. A. (2002). Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science, 297, 1536–1540.Google Scholar
- Pavlov, V., Xiao, Y., Gill, R., Dishon, A., Kotler, M., Willner, I. (2004). Amplified chemiluminescence surface detection of DNA and telomerase activity using catalytic nucleic acid labels. Analytical Chemistry, 76, 2152–2156.Google Scholar
- Mannelli, F., Minunni, A., Tombelli, S., Wang, R. H., Spiriti, M. M., Mascini, M. (2005). Direct immobilisation of DNA probes for the development of affinity biosensors. Bioelectrochemistry, 66, 129–138.Google Scholar
- Gooding, J. J. (2002). Electrochemical DNA hybridization biosensors. Electroanalysis, 14, 1149–1156.Google Scholar
- Janshoff, A., Galla, H. J., Steinem, C. (2000). Piezoelectric mass-sensing devices as biosensors—an alternative to optical biosensors? Angewandte Chemie International Edition in English, 39, 4004–4032.Google Scholar
- Fawcett, N. C., Evans, J. A., Chien, L. C., Flowers, N. (1988). A quartz crystal detector for DNA. Analytical Letters, 21, 1099–1110.Google Scholar
- Tolley, S. E., Wang, H. K., Smith, R. S., Christensen, D. A., Herron, J. N. (2003). Single-chain polymorphism analysis in long QT syndrome using planar waveguide fluorescent biosensors. Analytical Biochemistry, 315, 223–237.Google Scholar
- Vattanaviboon, P., Sangseekhiow, K., Winichagoon, P., Promptmas, C. (2008). Detection and haplotype differentiation of Southeast Asian alpha-thalassemia using polymerase chain reaction and a piezoelectric biosensor immobilized with a single oligonucleotide probe. Translational Research, 151, 246–54.Google Scholar
- Gambari, R., & Feriotto, G. (2006). Surface plasmon resonance for detection of genetically modified organisms in the food supply. Journal of AOAC International, 89, 893–897.Google Scholar
- Ivnitski, D., O’Neil, D. J., Gattuso, A., Schlicht, R., Calidonna, M., Fisher, R. (2003). Nucleic acid approaches for detection and identification of biological warfare and infectious disease agents. Biotechniques, 35, 862–869.Google Scholar
- Kemp, J. T., Davis, R. W., White, R. L., Wang, S. X., Webb, C. D. (2005). A novel method for STR-based DNA profiling using microarrays. Journal of Forensic Sciences, 50, 1109–13.Google Scholar
- Herrmann, D., Rose, E., Muller, U., Wagner, R. (2010). Microarray-based STR genotyping using RecA-mediated ligation. Nucleic Acids Research, 38, e172.Google Scholar
- Wodicka, L., Dong, H., Mittmann, M., Ho, M. H., Lockhart, D. J. (1997). Genome-wide expression monitoring in Saccharomyces cerevisiae. Nature Biotechnology, 15, 1359–1367.Google Scholar
- De Risi, J. L., Iyer, V. R., Brown, P. O. (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science, 278, 680–686.Google Scholar
- Petralia S, Verardo R, Klaric E, Cavallaro S, Alessia E, Schneider C (2013) In-check system: a highly integrated silicon lab-on-chip for sample preparation, PCR amplification and microarray detection of nucleic acids directly from biological samples. Sensors and Actuators, 187, 99–105.Google Scholar
- Flaim, C. J., Chien, S., Bhatia, S. N. (2005). An extracellular matrix microarray for probing cellular differentiation. Nature Methods, 2, 119–125.Google Scholar
- Wu, R. Z., Bailey, S. N., Sabatini, D. M. (2002). Cell-biological applications of transfected-cell microarrays. Trends in Cell Biology, 12, 485–488.Google Scholar
- Kononen, J., Bubendorf, L., Kallioniemi, A., Barlund, M., Schraml, P., Leighton, S., et al. (1998). Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nature Medicine, 4, 844–847.Google Scholar
- Nocito, A., Kononen, J., Kallioniemi, O. P., Sauter, G. (2001). Tissue microarrays (TMAs) for high-throughput molecular pathology research. International Journal of Cancer, 94, 1–5.Google Scholar
- Egholm, M., Buchardt, O., Christensen, L., Behrens, C., Freier, S. M., Driver, D. A., et al. (1993). PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature, 365, 566–568.Google Scholar
- Gaylord, B. S., Massie, M. R., Feinstein, S. C., Bazan, G. C. (2005). SNP detection using peptide nucleic acid probes and conjugated polymers: applications in neurodegenerative disease identification. Proceedings of the National Academy of Sciences of the United States of America, 102, 34–39.Google Scholar
- Komiyama, M., Ye, S., Liang, X., Yamamoto, Y., Tomita, T., Zhou, J. M., et al. (2003). PNA for one-base differentiating protection of DNA from nuclease and its use for SNPs detection. Journal of the American Chemical Society, 125, 3758–3762.Google Scholar
- Kuzuya, A., Zhou, J. M., Komiyama, M. (2004). DNA, PNA, and their derivatives for precise genotyping of SNPs. Mini-Reviews in Organic Chemistry, 1, 125–131.Google Scholar
- Choi, J. J., Jang, M., Kim, J., Park, H. J. (2010). Highly sensitive PNA array platform technology for single nucleotide mismatch discrimination. Microbiol Biotechnol, 20, 287–293.Google Scholar
- Wang, J. (1998). DNA biosensors based on peptide nucleic acid (PNA) recognition layers. A review. Biosensors and Bioelectronics, 13, 757–762.Google Scholar
- Song, J. Y., Park, H. G., Jung, S. O., Park, J. C. (2005). Diagnosis of HNF-1R mutations on a PNA zip-code microarray by single base extension. Progress in Nucleic Acid Research, 33, e19.Google Scholar
- Hashimoto, K., & Ishimori, Y. (2001). Preliminary evaluation of electrochemical PNA array for detection of single base mismatch mutations. Lab on a Chip, 1, 61–63.Google Scholar
- Braasch, D. A., & Corey, D. R. (2001). Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. Chemical Biology, 8, 1–7.Google Scholar
- Castoldi, M., Schmidt, S., Benes, V., Hentze, M. W., Muckenthaler, M. U. (2008). miChip: an array-based method for microRNA expression profiling using locked nucleic acid capture probes. Nature Protocols, 3, 321–329.Google Scholar
- Mocanu, D., Kolesnychencko, A., Aarts, S., Djong, A. T., Pierik, A., Coene, W., et al. (2008). Quantitative analysis of DNA hybridization in flow-through microarray for molecular testing. Analytical Biochemistry, 380, 84–90.Google Scholar
- Steel, A. B., Herne, T. M., Tarlov, M. G. (1998). Electrochemical quantitation of DNA immobilized on gold. Analytical Chemistry, 70, 4670–4677.Google Scholar
- Vainrub, A., & Pettitt, B. (2003). Sensitive quantitative nucleic acid detection using oligonucleotide microarrays. Journal of the American Chemical Society, 125, 7798–7799.Google Scholar
- Halperin, A., Buhot, A., Zhulina, E. B. (2004). Sensitivity, specificity, and the hybridization isotherms of DNA chips. Biophysical Journal, 86, 718–730.Google Scholar
- Michel, W., Mai, T., Nasier, T., Ott, A. (2007). Optical study of DNA surface for microarray hybridization kinetics. Biophysical Journal, 92, 999–1004.Google Scholar
- Chan, V., Graves, D. J., McKenzie, S. E. (1995). The biophysics of DNA hybridization with immobilized oligonucleotide probes. Biophysical Journal, 69, 2243–2255.Google Scholar
- Ventimiglia, G., Petralia, S., Alessi, E. (2012). The biophysics of nucleic acids sensing by hybridization on a lab-on-chip device. Sensors & Transducers Journal, 139, 152–161.Google Scholar
- Schena, M., Shalon, D., Davis, R. W., Brown, P. O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270, 467–470.Google Scholar
- Zhang, C., Xu, M. J., Ma, W., Zheng, W. (2006). PCR microfluidic devices for DNA amplification. Biotech Adv, 24, 243–284.Google Scholar
- Tsai J.,& Kim. C. J. (2002). A silicon-micromachined pin for contact droplet printing. Second Joint EMBS/BMES Conference, Houston, TX, USA 295–298.Google Scholar
- Belaubre, P., Guirardel, M., Garcia, G., Pourciel, J. B., Leberre, V., Dagkessamanskaia, A., et al. (2003). Fabrication of biological microarrays using microcantilevers. Applied Physics Letter, 82, 3122–3124.Google Scholar
- Austin, J., & Holway, A. H. (2011). Contact printing of protein microarrays. Methods in Molecular Biology, 785, 379–94.Google Scholar
- Xia, Y. N., & Whitesides, G. M. (1998). Soft lithography. Angewandte Chemie-International Edition, 37, 551–575.Google Scholar
- Zhao, X. M., & XiaYN, W. G. M. (1997). Soft lithographic methods for nano-fabrication. Journal of Materials Chemistry, 7, 1069–1074.Google Scholar
- Martin, B. D., Gaber, B. P., Patterson, C. H., Turner, D. C. (1998). Direct protein microarray fabrication using a hydrogel “stamper”. Langmuir, 14, 3971–3975.Google Scholar
- Yubing, X. (2012). The nanobiotechnology handbook. CRC, Boca Raton. doi:10.1201/b12935-14.
- Morozov, V. N. (2005). Protein microarrays: principles and limitations. In S. M. Jones (Ed.), Protein microarrays (pp. 71–106). Sudbury: Bartlett.Google Scholar
- Thévenet, S., Chen, H. Y., Lahann, J., Stellacci, F. (2007). A generic approach towards nanostructured surfaces based on supramolecular nanostamping on reactive polymer coatings. Advanced Materials, 19, 4333–4337.Google Scholar
- Pirrung, M. C., & Huang, C. Y. (1996). A general method for the spatially defined immobilization of biomolecules on glass surfaces using “caged” biotin. Bioconjugate Chemistry, 7, 317–321.Google Scholar
- Pritchard, D. J., Morgan, H., Cooper, J. M. (1995). Patterning and regeneration of surfaces with antibodies. Analytical Chemistry, 67, 3605–3607.Google Scholar
- Singh-Gasson, S., Green, R. D., Yue, Y., Nelson, C., Blattner, F., Sussman, M. R., et al. (1999). Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nature Biotechnology, 17, 974–978.Google Scholar
- Rogers, Y. H., Jiang-Baucom, P., Huang, Z. J., Bogdanov, V., Anderson, S., Boyce-Jacino, M. T. (1999). Immobilization of oligonucleotides onto a glass support via disulfide bonds: A method for preparation of DNA microarrays. Analytical Biochemistry, 266, 23–30.Google Scholar
- Strother, T., Hamers, R. J., Smith, L. M. (2000). Covalent attachment of oligodeoxyribonucleotides to amine-modified Si (001) surfaces. Nucleic Acids Research, 28, 3535–3541.Google Scholar
- Tengvall, P., Jansson, E., Askendal, A., Thomsen, P., Gretzer, C. (2003). Preparation of multilayer plasma protein films on silicon by EDC/NHS coupling chemistry. Colloids and Surfaces, B: Biointerfaces, 28, 261–272.Google Scholar
- Tabakman, S. M., Lau, L., Robinson, J. T., Price, J., Sherlock, S. P., Wang, H., et al. (2011). Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range. Nature Communications, 13, 2–466.Google Scholar
- Taylor, S., Smith, S., Windle, B., Guiseppi-Elie, A. (2003). Impact of surface chemistry and blocking strategies on DNA microarrays. Nucleic Acids Research, 31, e87.Google Scholar
- Cai, H., Wang, Y., He, P., Fang, Y. (2002). Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label. Analytica Chimica Acta, 469, 165–172.Google Scholar
- Caruso, F., Rodda, E., Furlong, D. N., Niikura, K., Okahata, Y. (1997). Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic acid sensor development. Analytical Chemistry, 69, 2043–2049.Google Scholar
- Douarche, C., Cortès, R., Henry de Villeneuve, C., Roser, S. J., Braslau, A. (2008). DNA adsorption at functionalized Si/buffer interfaces studied by x-ray reflectivity. Journal of Chemical Physics, 128, 225108.Google Scholar
- Saprigin, A. V., Thomas, C. W., Dulcey, C. S., Patterson, C. H., Jr., Spector, M. S. (2005). Probing organic self-assembled monolayers (SAMs) on silicon by FTIR with single reflectance ATR. Surface and Interface Analysis, 37, 24–32.Google Scholar
- Lockett, M. R., Phillips, M. F., Jarecki, J. L., Peelen, D., Smith, L. M. (2008). A tetrafluorophenyl activated ester self-assembled monolayer for the immobilization of amine-modified oligonucleotides. Langmuir, 24, 69–75.Google Scholar
- Lee, C. Y., Nguyen, P. C. T., Grainger, D. W., Gamble, L. J., Castner, D. G. (2007). Structure and DNA hybridization properties of mixed nucleic acid/maleimide-ethylene glycol monolayers. Analytical Chemistry, 79, 4390–4400.Google Scholar
- Petrovykh, D. Y., Perez-Dieste, V., Opdahl, A., Kimura-Suda, H., Sullivan, J. M., Tarlov, M. J., et al. (2006). Nucleobase orientation and ordering in films of single-stranded DNA on gold. Journal of the American Chemical Society, 128, 2–3.Google Scholar
- Ballav, N., Koelsch, P., Zharnikov, M. (2009). Orientation and ordering in monomolecular films of sulfur-modified homo-oligonucleotides on gold. Journal of Physical Chemistry C, 113, 18312–18320.Google Scholar
- Yin, H. B., Brown, T., Greef, R., Wilkinson, J. S., Melvin, T. (2004). Chemical modification and micropatterning of Si(100) with oligonucleotides. Microelectronic Engineering, 73–74, 830–836.Google Scholar
- Milton J.A., Patole S., Yin H., Xiao Q., Brown T., Melvin T. (2013). Efficient self-assembly of DNA-functionalized fluorophores and gold nanoparticles with DNA functionalized silicon surfaces: the effect of oligomer spacers. Nucleic Acids Research 1–12 doi:10.1093/nar/gkt031
- Schüler, T., Nykytenko, A., Csaki, A., Möller, R., Fritzsche, W., Popp, J. (2009). UV cross-linking of unmodified DNA on glass surfaces. Analytical and Bioanalytical Chemistry, 395, 1097–105.Google Scholar
- Gudnason, H., Dufva, H. M., Bang, D. D., Wolff, A. (2008). An inexpensive and simple method for thermally stable immobilization of DNA on an unmodified glass surface: UV linking of poly(T)10-poly(C)10-tagged DNA probes. BioTechniques, 45, 261–271.Google Scholar
- Gudnason H., & Dufva, H. M. (2005). Immobilization of DNA to polymerized PDMS by direct UV-cross-linking. Abstract Advances in Microarray Technology conference (London, UK).Google Scholar
- Livache, T., Roget, A., Dejean, E., Barthet, C., Bidan, G., Téoule, R. (1994). Preparation of a DNA matrix via an electrochemically directed copolymerization of pyrrole and oligonucleotides bearing a pyrrole group. Nucleic Acids Research, 22, 2915–21.Google Scholar
- Carrara, S., Cavallini, A., Maruyama, Y., Charbon, E., De Micheli, G. (2010). A new ethylene glycol-silane monolayer for highly-specific DNA detection on silicon chips. Surface Science Letters A, 604, L71–L74.Google Scholar
- Jeyachandran, Y. L., Mielczarski, J. A., Mielczarski, E., Rai, B. (2010). Efficiency of blocking of non-specific interaction of different proteins by BSA adsorbed on hydrophobic and hydrophilic surfaces. Journal of Colloid and Interface Science, 341, 136–42.Google Scholar
- Christensen, T. B., Pedersen, C. M., Gr¨ondahl, K. G., Jensen, T. G., Sekulovic, A., Bang, D. D., et al. (2007). PCR biocompatibility of lab-on-a-chip and MEMS materials. Journal of Micromechanics and Microengineering, 17, 1527.Google Scholar
- Petralia, S., & Ventimiglia, G. (2012). Stability evaluation of protein coating for sensing: an application to silicon based lab-on-chip device. Sensors & Transducers Journal, 137, 215–225.Google Scholar
- Frederixa, F., Bonroya, K., Reekmansa, G., Laureyna, W., Campitellia, A., Abramovb, M. A., et al. (2004). Reduced nonspecific adsorption on covalently immobilized protein surfaces using poly(ethylene oxide) containing blocking agents. Journal of Biochemical and Biophysical Methods, 58, 67–74.Google Scholar
- Warrington, J. A., Dee, S., Trulson, M. (2000). Large-scale genomic analysis using Affymetrix GeneChipw probe arrays. In M. Schena (Ed.), Microarray biochip technology (pp. 119–148). Natick: Eaton.Google Scholar
- Adler, K., Broadbent, J., Garlick, R., Joseph, R., Khimani, A., Mikulskis, A., et al. (2000). MICROMAXE: a highly sensitive system for differential gene expression on microarrays. In M. Schena (Ed.), Microarray biochip technology (pp. 221–230). Natick: Eaton.Google Scholar
- Schena, M., & Davis, R. W. (2000). Technology standards for microarray research. In M. Schena (Ed.), Microarray biochip technology (pp. 1–18). Natick: Eaton.Google Scholar
- Hegde, P., Qi, R., Abernathy, K., Gay, C., Dharap, S., Gaspard, R., et al. (2000). A concise guide to cDNA microarray analysis. Biotechniques, 29, 548–560.Google Scholar
- Lee, J. W., Bang, K. H., Choi, J. J., Chung, J. W., Lee, J. H., Jo, I. H., et al. (2010). Development of peptide nucleic acid (PNA) microarray for identification of Panax species based on the nuclear ribosomal internal transcribed spacer (ITS) and 5.8S rDNA regions. Genes & Genomics, 32, 463–468.Google Scholar
- Song, H. J., Lee, J. W., Kim, B. G., Song, S. Y., Bae, D. S., Kim, D. S. (2010). Comparison of the performance of the PANArray™ HPV test and DNA chip test for genotyping of human papillomavirus in cervical swabs. BioChip Journal, 4, 167–172.Google Scholar
- Vaidla, K., Uksti, J., Zeitz, C., Oitmaa, E. (2013). Arrayed primer extension microarray for the analysis of genes associated with congenital stationary night blindness. Methods in Molecular Biology, 963, 319–26.Google Scholar
- Dušková, L., Kopečková, L., Jansová, E., Tichý, L., Freiberger, T., Zapletalová, P., et al. (2011). An APEX-based genotyping microarray for the screening of 168 mutations associated with familial hypercholesterolemia. Atherosclerosis, 216, 139–45.Google Scholar
- Foglieni, B., Brisci, A., San Biagio, F., Di Pietro, P., Petralia, S., Conoci, S., et al. (2010). Integrated PCR amplification and detection processes on a lab-on-chip platform: a new advanced solution for molecular diagnostics. Clinical Chemistry and Laboratory Medicine, 48, 329–336.Google Scholar
- Teo, J., Di Pietro, P., San Biagio, F., Capozzoli, M., Deng, Y. M., Barr, I., et al. (2011). VereFlu™: an integrated multiplex RT-PCR and microarray assay for rapid detection and identification of human influenza A and B viruses using lab-on-chip technology. Archives of Virology, 156, 1371–1378.Google Scholar
- Pernagallo, S., Ventimiglia, G., Cavalluzzo, C., Alessi, E., Ilyine, H., Bradley, M., et al. (2012). Novel biochip for nucleic acids analysis. Sensors, 12, 8100–8111.Google Scholar
- Bowler, F. R., Diaz-Mochon, J. J., Swift, M. D., Bradley, M. (2010). DNA analysis by dynamic chemistry. Angewandte Chemie International Edition, 49, 1809–1812.Google Scholar
- Epstein, J. R., Leung, A. P. K., Lee, K. H., Walt, D. R. (2003). High-density, microsphere-based fiber optic DNA microarrays. Biosensors and Bioelectronics, 18, 541–546.Google Scholar
- Steemers, F. J., Ferguson, J. A., Walt, D. R., Steemers, F. J., Ferguson, J. A., Walt, D. R. (2000). Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays. Nature Biotechnology, 18, 91–94.Google Scholar
- Marras, S. A. E., Tyagi, S., Kramer, F. R. (2006). Real-time assays with molecular beacons and other fluorescent nucleic acid hybridization probes. Clinica Chimica Acta, 363, 48–60.Google Scholar
- Xu, F., Datta, P., Wang, H., Gurung, S., Hashimoto, M., Wei, S., et al. (2007). Polymer microfluidic chips with integrated waveguides for reading microarrays. Analytical Chemistry, 79(23), 9007–9013.Google Scholar
- Schwers, S., Reifenberger, E., Gehrmann, M., Izmailov, A., Bohmann, K. (2009). A high-sensitivity, medium-density, and target amplification-free planar waveguide microarray system for gene expression analysis of formalin-fixed and paraffin-embedded tissue. Clinical Chemistry, 55(11), 1995–2003.Google Scholar
- Mueller, C., Liotta, L. A., Espina, V. (2010). Reverse phase protein microarrays advance to use in clinical trials. Molecular Oncology, 4(6), 461–481.Google Scholar
- Pawlak, M., Schick, E., Bopp, M. A., Schneider, M. J., Oroszlan, P., Ehrat, M. (2002). Zeptosens’ protein microarrays: a novel high performance microarray platform for low abundance protein analysis. Proteomics, 2, 383–393.Google Scholar
- Takenaka, S., Yamashita, K., Takagi, M., Uto, Y., Kondo, H. (2000). DNA sensing on a DNA probe-modified electrode using ferrocenylnaphthalene diimide as the electrochemically active ligand. Analytical Chemistry, 72(6), 1334–41.Google Scholar
- Kato, D., Goto, K., Fujii, S., Takatsu, A., Hirono, S., Niwa, O. (2011). Electrochemical DNA methylation detection for enzymatically digested CpG oligonucleotides. Analytical Chemistry, 83(20), 7595–9.Google Scholar
- Kick, A., Bönsch, M., Katzschner, B., Voigt, J., Herr, A., Brabetz, W., et al. (2010). DNA microarrays for hybridization detection by surface plasmon resonance spectroscopy. Biosensors and Bioelectronics, 26(4), 1543–7.Google Scholar
- Iuliana, E., Sendroiu, G. L. K., Lupták, A., Corn, R. M. (2011). Ultrasensitive DNA microarray biosensing via in situ RNA transcription-based amplification and nanoparticle-enhanced SPR imaging. Journal of the American Chemical Society, 133(12), 4271–4273.Google Scholar
- Minunni, M., Tombelli, S., Mascini, M., Bilia, A., Bergonzi, M. C., Vincieri, F. F. (2005). An optical DNA-based biosensor for the analysis of bioactive constituents with application in drug and herbal drug screening. Talanta, 65, 578.Google Scholar
- Kim, S., Jang, Y., Kim, S., Kim, T. D., Melikyan, H., Babajanyan, A., et al. (2011). Detection of DNA-hybridization using a near-field scanning microwave microscope. Nanoscience and Nanotechnology, 11(5), 4222–4226.Google Scholar
- Lee, K., Babajanyan, A., Melikyan, H., Kim, C., Kim, S., Kim, J., et al. (2013). Label-free DNA microarray bioassays using a near-field scanning microwave microscope. Biosensors and Bioelectronics, 42, 326–331.Google Scholar
- Song, H. M., Dengab, L., Khashab, N. M. (2013). Intracellular surface-enhanced Raman scattering (SERS) with thermally stable gold nanoflowers grown from Pt and Pd seeds. Nanoscal, 5, 4321–4329.Google Scholar
- Barhoumi, A., & Halas, N. J. (2010). Label-free detection of DNA hybridization using surface enhanced Raman spectroscopy. Journal of the American Chemical Society, 132(37), 12792–3.Google Scholar
- Li, J. F., Huang, Y. F., Ding, Y., Yang, Z. L., Li, S. B., Zhou, X. S., et al. (2010). Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature, 464, 392–395.Google Scholar
- Driskell, J. D., Setob, A. G., Jonesa, L. P., Jokela, S., Dluhyc, R. A., Zhaod, Y. P., et al. (2008). Rapid microRNA (miRNA) detection and classification via surface-enhanced Raman spectroscopy (SERS). Biosensors and Bioelectronics, 24, 917–922.Google Scholar
- Allain, L. R., & Vo-Dinh, T. (2002). Surface-enhanced Raman scattering detection of the breast cancer susceptibility gene BRCA1 using a silver-coated microarray platform. Analytica Chimica Acta, 469, 149.Google Scholar
- Yao, C., Zhu, T., Qi, Y., Zhao, Y., Xia, H., Fu, W. (2010). Development of a quartz crystal microbalance biosensor with aptamers as bio-recognition element. Sensors, 10, 5859–5871.Google Scholar
- Su, X. D., Wu, Y. J., Robelek, R., Knoll, W. (2005). A surface plasmon resonance spectroscopy and quartz crystal microbalance study of streptavidin film structure effects on biotinylated DNA assembly and target DNA hybridisation. Langmuir, 21, 348–353.Google Scholar
- Wang GY, Su XD, Knoll W and Wu YJ, A Sensor, PCT/SG2004/000296, Surface plasmon resonance and quartz crystal microbalance sensor.Google Scholar
- Su, X. D., Rudolf, R., Wu, Y. J., Wang, G. Y., Knoll, W. (2004). Detection of point mutation and insertion mutations in DNA using QCM and MutS, a mutation binding protein. Analytical Chemistry, 76, 489–494.Google Scholar
- Barnes, C. (1991). Development of quartz crystal oscillators for under-liquid sensing. Sens Actuat A, 29, 59–69.Google Scholar
- García-Martinez, G., Bustabad, E. A., Perrot, H., Gabrielli, C., Bucur, B., Lazerges, M., et al. (2011). Development of a mass sensitive quartz crystal microbalance (QCM)-based DNA biosensor using a 50 MHz electronic oscillator circuit. Sensors, 11(8), 7656–7664.Google Scholar
- Hai-Feng, J., & Benjamin, D. (2010). Armon approaches to increasing surface stress for improving signal-to-noise ratio of microcantilever sensors. Analytical Chemistry, 82, 1634–1642.Google Scholar
- Zhang, J., Lang, H. P., Huber, F., Bietsch, A., Grange, W., Certa, U., et al. (2006). Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nature Nanotechnology, 1, 214–220.Google Scholar
- Hansen, K. M., Ji, H. F., Wu, G., Datar, R., Cote, R., Majumdar, A., et al. (2001). Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. Analytical Chemistry, 73(7), 1567–1571.Google Scholar
- McKendry, R., Zhang, J., Arntz, Y., Strunz, T., Hegner, M., Lang, H. P., et al. (2002). Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. PNAS, 99(15), 9783–9788.Google Scholar
- Adami A., Odorizzi L., Decarli M., Lorenzelli L., Fincati K., Schicho K., Gruessinger H. (2010). Development of MEMS microcantilever detectors for DNA single nucleotide polymorphism detection in autoimmune diseases diagnostic. Sensors and Microsystems Lecture Notes in Electrical Engineering 54:335–338. 14th Italian Conference on Sensors and Microsystems; AISEM 2009.Google Scholar
- Huber, F., Lang, H. P., Hegner, M., Despont, M. (2008). Analyzing refractive index changes and differential bending in microcantilever arrays. Review of Scientific Instruments, 79, 086110–1–086110–3.Google Scholar
- Kataoka-Hamai, C., & Miyahara, Y. (2011). Label-free detection of DNA by field-effect devices. Sensors Journal, 11(12), 3153–3160.Google Scholar
- Sassolas, A., Leca-Bouvier, B. D., Blum, L. J. (2008). DNA biosensors and microarrays. Chemical Reviews, 108, 109–139.Google Scholar
- Bandiera, L., Cellere, G., Cagnin, S., De Toni, A., Lanfranchi, G., Lorenzelli, U. (2007). A fully electronic sensor for the measurement of cDNA hybridization kinetics. Biosensors and Bioelectronics, 22, 2108–2114.Google Scholar
- Palecek, E. (1960). Oscillographic polarography of highly polymerized deoxyribonucleic acid. Nature, 188, 656–657.Google Scholar
- Kim, D. S., Jeong, Y. T., Park, H. J., Shin, J. K., Choi, P., Lee, J. H., et al. (2005). An FET-type charge sensor for highly sensitive detection of DNA sequence. Biosensors and Bioelectronics, 20, 69–74.Google Scholar
- Stagni, C., Guiducci, C., Benini, L., Riccò, B., Carrara, S., Paulus, C., et al. (2007). A fully-electronic label-free DNA sensor chip. IEEE Sens J, 7, 577–585.Google Scholar
- Tsoutia, V., Boutopoulosb, C., Andreakoub, P., Ioannouc, M., Zergioti, I., Goustouridisa, D., et al. (2010). Detection of DNA mutations using a capacitive micro-membrane array. Biosensors and Bioelectronics, 26, 1588–1592.Google Scholar
- Saoud, M., Blaszykowski, C., Ballantyne, S. M., Thompson, M. (2009). Linker immobilization of protein and oligonucleotide on indium-tin-oxide for detection of probe–target interactions by Kelvin physics. Analyst, 134, 835–837.Google Scholar
- Sinensky, A. K., & Belcher, A. M. (2007). Label-free and high-resolution protein/DNA nanoarray analysis using Kelvin probe force microscopy. Nature Nanotechnology, 2, 653–659.Google Scholar
- Thompson, M., Cheran, L., Zhang, M., Chacko, M. (2005). Label-free detection of nucleic acid and protein microarrays by scanning Kelvin nanoprobe. Biosensors and Bioelectronics, 20, 1471–1481.Google Scholar